MICHAEL AND CECILIA IBRU UNIVERSITY, AGBARHA-OTOR FACULTY OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SECOND SEMESTER 2017/2018 DEGREE EXAMINATIONS COURSE CODE: PHY 108 LEVEL: 100 COURSE TITTLE: GENERAL PHYSICS LABORATORY II [50 marks] TIME ALLOWED: 1 Hour 30 mins INSTRUCTION: Answer all Questions.

(a) Mention and discuss three sources of experimental errors. [9 marks]
(b) The centripetal force, F, of an object of mass, m, moving at a constant speed, v, along a circular path of radius, r, is given by

$$F = \frac{mv^2}{r}$$
. If $m = 4.5 \pm 0.1$ kg, $v = 25 \pm 1$ ms⁻¹, and $r = 12.5 \pm 0.5$ m, calculate the

- (i) maximum error in F; [5 marks]
- (ii) percentage error in F. [2 marks]
- 2. The following readings were obtained from an experiment aimed at determining the acceleration due to gravity, g, using a simple pendulum.

Length, l (cm)	Time, t, for 10
	oscillations (s)
10	6.3
25	10.4
37	12.2
45	13.8
67	16.7
75	17.6
82	18.4

(a) Plot a graph of the length, l, against the square of the period, T², of oscillation and use it to obtain the value of the acceleration due to gravity, g_1 .

[10 marks]

- (b) Plot another graph of the period, T, of oscillation against the square root of the length, \sqrt{l} , and use it to obtain the value of the acceleration due to gravity, g_2 . [10 marks]
- (c) Determine the actual value of $g = \frac{g_{1+}g_2}{2}$. [2 marks]
- (d)State two precautions that you would take if you were to perform the experiment in the laboratory. [2 marks]
- 3. (a) In an experiment to determine the density of a certain liquid, a student measured the density of the liquid to be 8.0×10^{-4} gcm⁻³. Express this result in S.I. unit. [4 marks]
 - (b) Evaluate the following to three significant figures:
 - (i) $\sqrt{29} \text{ Nm}^2$ (ii) log 50 N (iii) sin 65⁰ [6 marks]